- $2.4 \star \star$ (a) In a short time dt the projectile moves a distance vdt, and the front sweeps out a cylinder of volume Avdt. Therefore the mass of fluid encountered is $\varrho Avdt$, and the rate at which mass is swept up is ϱAv .
- (b) If a mass $\rho Avdt$ is accelerated from 0 to v in time dt, the rate of change of its momentum is ρAv^2 . This is, therefore, the forward force on the fluid and, hence, the backward force on the projectile.
- (c) Since $A \propto D^2$, it follows that $f_{\text{quad}} = \kappa \varrho A v^2 = c v^2$, where $c = \kappa \varrho A \propto D^2$. For a sphere in air, $\kappa = 1/4$, $A = \pi D^2/4$, and $\varrho = 1.29 \text{ kg/m}^3$, so $f_{\text{quad}} = (\kappa \varrho \pi D^2/4) v^2 = c v^2$, where $c = \gamma D^2$ and

$$\gamma = \kappa \varrho \pi / 4 = \frac{1}{4} \times (1.29 \text{ kg/m}^3) \times \pi / 4 = 0.25 \text{ N} \cdot \text{s}^2/\text{m}^4.$$

2.6 \star (a) If we insert the Taylor series for $e^{-t/\tau}$ into (2.33), we get

$$v_y(t) = v_{\text{ter}} \left[1 - e^{-t/\tau} \right] = v_{\text{ter}} \left[1 - \left(1 - \frac{t}{\tau} + \frac{t^2}{2\tau^2} - \cdots \right) \right].$$

The first two terms on the right cancel, and, if t is sufficiently small, we can neglect terms in t^2 and higher. This leaves us with

$$v_u(t) \approx v_{\text{ter}} t / \tau = gt$$

where to get the second equality I replaced v_{ter} by $g\tau$ as in (2.34).

(b) Putting $v_{yo} = 0$ into (2.35) and then inserting the Taylor series for the exponential, we find: $y(t) = v_{\text{ter}}t - v_{\text{ter}}\tau \left[1 - e^{-t/\tau}\right] = v_{\text{ter}}t - v_{\text{ter}}\tau \left[1 - \left(1 - \frac{t}{\tau} + \frac{t^2}{2\tau^2} - \cdots\right)\right].$

On the right side, the second and third terms cancel, as do the first and fourth. If we neglect all terms beyond t^2 , this leaves us with $y(t) \approx v_{\text{ter}} t^2/(2\tau) = \frac{1}{2}gt^2$, since $v_{\text{ter}} = g\tau$.

2.12 ★★ By the chain rule,

$$\dot{v} = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx} = \frac{1}{2}\frac{d(v^2)}{dx}.$$

This lets us rewrite the second law, $m\dot{v} = F$, as

$$\frac{d}{dx}(v^2) = \frac{2}{m}F(x),$$

which can be integrated to give

$$v^2 - v_o^2 = \frac{2}{m} \int_{x_o}^x F(x') dx'$$

as claimed. If F is constant, this reduces to the well-known kinematic result $v^2 - v_o^2 = 2a \Delta x$, where a = F/m is the constant acceleration and $\Delta x = x - x_o$.

2.13 ** With F = -kx and $v_0 = 0$, Eq.(2.85) becomes

$$v^2 = -\frac{2k}{m} \int_{x_0}^x x' dx' = \omega^2 (x_0^2 - x^2)$$
 or $v = -\omega \sqrt{x_0^2 - x^2}$ (i)

where I have introduced the shorthand $\omega^2 = k/m$. [The second result is the square root of the first. Getting the right sign for the square root takes a little thought. Initially the velocity is clearly negative, and this is the phase of the motion I shall consider. After a while, the sign of v changes and the minus sign in (i) must be changed to a plus. Quite surprisingly, the final result is the same either way.]

Writing v = dx/dt in (i), rearranging, and integrating, we find that

$$\omega t = -\int_{x_0}^x dx' / \sqrt{x_o^2 - x^2} = \arccos(x/x_o)$$
 or $x = x_o \cos(\omega t)$,

which is simple harmonic motion. (To do the integral, I used the substitutions $x/x_0 = u$ and then $u = \cos \theta$.)

2.18 \star (a) If $f(x) = \ln(x)$, then, as you can easily check, f(1) = 0, f'(1) = 1, f''(1) = -1, f'''(1) = 2, and $f^{(n)}(1) = (-1)^{n-1}(n-1)!$, so

$$\ln(1+\delta) = \delta - \frac{\delta^2}{2} + \frac{\delta^3}{3} - \frac{\delta^4}{4} + \cdots$$

(b) If $f(x) = \cos(x)$, then f(0) = 1, $f'(0) = -\sin(0) = 0$, $f''(0) = -\cos(0) = -1$, $f'''(0) = \sin(0) = 0$, and so on. Thus

$$\cos(\delta) = 1 - \frac{\delta^2}{2!} + \frac{\delta^4}{4!} + \cdots$$

(c) Similarly, $\sin(\delta) = \delta - \frac{\delta^3}{3!} + \frac{\delta^5}{5!} + \cdots$ and (d) $e^{\delta} = 1 + \delta + \frac{\delta^2}{2!} + \frac{\delta^3}{3!} + \cdots$.

2.19 \star (a) In the absence of air resistance, we know that $x = v_{xo}t$ and $y = v_{yo}t - \frac{1}{2}gt^2$. If we solve the first of these to give $t = x/v_{xo}$ and then substitute into the second, we find

$$y = \frac{v_{yo}}{v_{xo}}x - \frac{1}{2}g\left(\frac{x}{v_{xo}}\right)^2,$$

which is the equation of a parabola.

(b) As air resistance is switched off, $\tau \to \infty$, and the second term inside the log term of (2.37) becomes small. Thus we can use the Taylor series (2.40) for the log,

$$\ln\left(1 - \frac{x}{v_{xo}\tau}\right) = -\frac{x}{v_{xo}\tau} - \frac{1}{2}\left(\frac{x}{v_{xo}\tau}\right)^2 - \cdots,$$

in (2.37). For τ sufficiently large, we can neglect all remaining terms in this series and (2.37) becomes

$$y \approx \frac{v_{yo} + v_{\text{ter}}}{v_{xo}} x - v_{\text{ter}} \tau \left(\frac{x}{v_{xo}\tau} + \frac{1}{2} \frac{x^2}{v_{xo}^2 \tau^2} \right).$$

The second and third terms on the right cancel, and, if we replace v_{ter} by $g\tau$, the two remaining terms give precisely the answer to part (a).

2.23 * According to Eq.(2.59), $v_{\text{ter}} = \sqrt{mg/\gamma D^2}$. Since $m = \frac{4}{3}\pi R^3 \varrho = \frac{1}{6}\pi D^3 \varrho$, we can eliminate either m or D to give

$$v_{\text{ter}} = \sqrt{\frac{\pi D \varrho g}{6\gamma}} = \left(\frac{\pi \varrho}{6m}\right)^{1/3} \sqrt{\frac{mg}{\gamma}}.$$
 (ii)

In all three cases, $g = 9.8 \text{ m/s}^2$ and $\gamma = 0.25 \text{ kg/m}^3$.

- (a) With D=3 mm and $\varrho=8$ g/cm³, the second expression in Eq.(ii) gives $v_{\rm ter}=22$ m/s.
- (b) With $m=16\times0.454=7.26$ kg and $\varrho=8$ g/cm³, the third expression in Eq.(ii) gives $v_{\rm ter}=140$ m/s.
- (c) With $m=200\times0.454=90.8$ kg and $\varrho=1$ g/cm³, the third expression in Eq.(ii) gives $v_{\rm ter}=107$ m/s.

 $\mathbf{2.27} \star \mathbf{If}$ we choose our x axis pointing straight up the slope, then for the upward journey the x component of the second law reads

$$m\dot{v} = -cv^2 - mg\sin\theta = -c(v^2 + v_{\text{ter}}^2)$$

where v denotes the x component of the velocity and I have introduced the terminal speed for the puck on the incline, defined so that $v_{\text{ter}}^2 = (mg\sin\theta)/c$. If we write this in the separated form $m\,dv/(v^2+v_{\text{ter}}^2) = -c\,dt$, we can integrate both sides (the left side from v_{o} to v and the right from 0 to t) to give

$$\frac{m}{v_{\text{ter}}}[\arctan(v/v_{\text{ter}}) - \arctan(v_{\text{o}}/v_{\text{ter}})] = -ct$$
 (iii)

-3

/ sinh(z)

-5

which can be solved to give

$$v = v_{\text{ter}} \tan(\arctan(v_{\text{o}}/v_{\text{ter}}) - cv_{\text{ter}}t/m).$$

Putting v = 0 in Eq.(iii), we find that the time to reach the top is $t = (m/cv_{\text{ter}}) \arctan(v_{\text{o}}/v_{\text{ter}})$.

2.33 ** (a) Note that when z is large and positive, $\cosh z \approx \sinh z \approx e^z/2$.

Similarly, when z is large and negative,

$$\cosh z \approx -\sinh z \approx e^{-z}/2.$$

Also

$$\cosh(0) = 1$$
 and $\sinh(0) = 0$.

(b)
$$\cos(iz) = \frac{e^{i(iz)} + e^{-i(iz)}}{2} = \frac{e^{-z} + e^z}{2} = \cosh(z).$$

Similarly, $\sinh(z) = -i\sin(iz)$.

Integrating these two results, we find that

$$\int \sinh(z)dz = \cosh(z) \quad \text{and} \quad \int \cosh(z)dz = \sinh(z)$$

(d)
$$\cosh^2(z) - \sinh^2(z) = [\cos(iz)]^2 - [-i\sin(iz)]^2 = [\cos(iz)]^2 + [\sin(iz)]^2 = 1$$

(e) If we make the substitution $x = \sinh(z)$, then

$$\int \frac{dx}{\sqrt{1+x^2}} = \int \frac{\cosh z \, dz}{\sqrt{1+\sinh^2 z}} = \int dz = z = \operatorname{arcsinh}(x).$$

2.39 ** (a) The equation of motion is $m\dot{v} = -f_{\rm fr} - cv^2$, which separates to give

$$-m\frac{dv}{f_{\rm fr} + cv^2} = dt.$$

This can be integrated from time 0 to t (and velocity from v_0 to v). The integral over v gives an arctan function. (Make the substitutions $cv^2/f_{\rm fr} = u^2$ and then $u = \tan w$.) The result is

$$t = \frac{m}{\sqrt{f_{\rm fr}c}} \left(\arctan \sqrt{\frac{c}{f_{\rm fr}}} v_{\rm o} - \arctan \sqrt{\frac{c}{f_{\rm fr}}} v\right).$$

(b) Putting in the numbers, with $v_o = 20$ m/s and the four given final velocities v = 15, 10, 5, and 0 m/s, we find the following corresponding times:

The corresponding times if we neglect friction are (from Problem 2.26) 6.7, 20.0, 60.0, and ∞ . To neglect friction, compared to the quadratic air resistance, is quite good at higher speeds, but terrible at very low speeds.

2.47 * (a) $z = 6 + 8i = 10e^{i\theta}$ and $w = 3 - 4i = 5e^{-i\theta}$, where $\theta = 0.927$ rad. (Note that the phase angles of z and w are exactly opposite — same θ in both expresions.) Therefore

$$z + w = 9 + 4i$$
 and $z - w = 3 + 12i$,

$$zw = (10e^{i\theta})(5e^{-i\theta}) = 50,$$

and

$$\frac{z}{w} = \frac{10e^{i\theta}}{5e^{-i\theta}} = 2e^{2i\theta} = 2\cos(2\theta) + 2i\sin(2\theta) = -0.56 + 1.92i,$$

or

$$\frac{z}{w} = \frac{zw^*}{ww^*} = \frac{(6+8i)(3+4i)}{(3-4i)(3+4i)} = \frac{-14+48i}{25} = -0.56+1.92i.$$

(b)
$$z = 8e^{i\pi/3} = 4 + 4\sqrt{3}i$$
 and $w = 4e^{i\pi/6} = 2\sqrt{3} + 2i$. Therefore,

$$z + w = (4 + 2\sqrt{3}) + (4\sqrt{3} + 2)i$$
 and $z - w = (4 - 2\sqrt{3}) + (4\sqrt{3} - 2)i$,

$$zw = (8e^{i\pi/3})(4e^{i\pi/6}) = 32e^{i\pi/2} = 32i$$
 and $\frac{z}{w} = \frac{8e^{i\pi/3}}{4e^{i\pi/6}} = 2e^{i\pi/6} = \sqrt{3} + i$.

2.53 ★ The components of the force are $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = q(v_y B, -v_x B, E)$, so the three components of $m\mathbf{a} = \mathbf{F}$ are

$$m\dot{v}_x = qBv_y, \qquad m\dot{v}_y = -qBv_x, \qquad m\dot{v}_z = qE.$$

The first two of these are exactly the same as (2.64) and (2.65) for the case of no electric field, and the motion of x and y is therefore the same as in Figure 2.15: The transverse position (x,y) moves clockwise around a circle at constant angular velocity $\omega = qB/m$. The equation for v_z shows that there is a constant acceleration in the z direction, $a_z = qE/m$, so that $z = z_0 + v_{z0}t + \frac{1}{2}a_zt^2$. The particle moves in a helix or spiral of constant radius around a line parallel to the z axis, with an increasing pitch as the motion in the z direction accelerates.