2.4 % (a) In a short time df the projectile moves a distance vdt, and the front sweeps out
a cylinder of volume Awvdt. Therefore the mass of fluid encountered is p Avdt, and the rate
at which mass is swept up is pAv.

(b) If a mass pAvdt is accelerated from 0 to v in time dt, the rate of change of its mo-
mentum is pAv?. This is, therefore, the forward force on the fluid and, hence, the backward
force on the projectile.

(c) Since A x D?, it follows that fyua = keAv? = cv?, where ¢ = kpA x D?. For a
sphere in air, kK = 1/4, A = 7D?/4, and ¢ = 1.29 kg/m>, 50 fouaa = (KowD?/4)v? = cv?,
where ¢ = vD? and

= kor/4=1x(1.29 kg/m’) x /4 =025 N-s?/m".

2.6 » () If we insert the Taylor series for e=*/7 into (2.33), we get

—t/r t {2
Uy(t):'b‘ter[]-_e ]:vter 1— 1_;+F__ .

The first two terms on the right cancel, and, if ¢ is sufficiently small, we can neglect terms
in 2 and higher. This leaves us with
V(1) = Viert/T = gt

where to get the second equality I replaced vy, by g7 as in (2.34).

(b) Putting v,, = 0 into (2.35) and then inserting the Taylor series for the exponential,
we find: , " +2
Y(t) = Vol — VpxT[l — €/ = Vet —VpuuT |1 — [l — =+ — —--- )] ..
y( ) ter ter [ ] ter ter |: ( = 272 )]

On the right side, the second and third terms cancel, as do the first and fourth. If we neglect
all terms beyond 2, this leaves us with y(t) & v, t?/(27) = % gt2, since vy, = gT.

2.12 xx By the chain rule,

dv _dvdr _ dv _ 1d(v*)
dt  drdt  dr 2 dz

This lets us rewrite the second law, mi = F, as

d, . 2
E(U )= EF(I)r

v =

which can be integrated to give o [
v —vli=— / F(2")dx'
m /..

as claimed. If F is constant, this reduces to the well-known kinematic result v? —v? = 2a Az,
where a = F/m is the constant acceleration and Az = z — .




2.13 »x With F = —kz and v, = 0, Eq.(2.85) becomes

v = 2k rdr’ =w*(x2 -1 or v=-wyz2—2x? (1)
Y
where I have introduced the shorthand w? = k/m. [The second result is the square root
of the first. Getting the right sign for the square root takes a little thought. Initially the
velocity is clearly negative, and this is the phase of the motion I shall consider. After a
while, the sign of v changes and the minus sign in (i) must be changed to a plus. Quite
surprisingly, the final result is the same either way.]

Writing v = dx/dt in (i), rearranging, and integrating, we find that

= —/ dzr'/\/z2 — 2?2 = arccos(z/x,) or =z = z,cos(wt),

which is simple harmonic motion. (To do the integral, I used the substitutions z/z, = u and
then u = cos#.)

2.18 » (a) If f(z) = In(z), then, as you can easily check, f(1) =0, f'(1) =1, f"(1) = —
f"(1) =2, and f™(1) = (=1)"1(n - 1)\, so
2 B8 4
111(1+(5):(5—E+§—Z+'-- !

(b) If f(z) = cos(z), then f(0) = 1, f'(0) = —sin(0) = 0, f(0) = —cos(0) = —1,

f"(0) =sin(0) = 0 and so on. Thus
2 54
cos(é)_l—g—i- +-
53 5 62 63
(c) Similarly, sin(8) = 6 — 3 —l— + and (d)e®=1+6 + + T + -




2.19 x» (a) In the absence of air resistance, we know that & = v,ot and y = vyt — Zl,gt?. If
we solve the first of these to give t = z /v,, and then substitute into the second, we find

which is the equation of a parabola.

(b) As air resistance is switched off, 7 — oo, and the second term inside the log term of
(2.37) becomes small. Thus we can use the Taylor series (2.40) for the log,

T T 1 r \?
n({l———) =- - = — e,
VipsT UpaT 2 \UpsT

in (2.37). For 7 sufficiently large, we can neglect all remaining terms in this series and (2.37)

becomes
Uyo + Vter r 1 & B
Y e — Upa T | == )=
v [ &Tro

VUro UpoT 29,272

The second and third terms on the right cancel, and, if we replace v by g7, the two
remaining terms give precisely the answer to part (a).

2.23 » According to Eq.(2.59), ver = y/mg/7D?. Since m = 3wR%p = inD%p, we can
eliminate either m or D to give
D 1/3
S L (ﬂ) g (i)
6y 6m Y
In all three cases, ¢ = 9.8 m/s* and v = 0.25 kg/m?.
(a) With D = 3 mm and p = 8 g/ecm?, the second expression in Eq.(ii) gives vier = 22 m/s.
(b) With m = 16 x 0.454 = 7.26 kg and p = 8 g/cm®, the third expression in Eq.(ii)
gives vger = 140 m/s.
(c) With m = 200 x 0.454 = 90.8 kg and ¢ = 1 g/cm?®, the third expression in Eq.(ii)
gives Uger = 107 m/s.




2.27 » If we choose our x axis pointing straight up the slope, then for the upward journey
the x component of the second law reads

mi = —cv? — mgsinf = —c(v? +v,2)
where v denotes the x component of the velocity and I have introduced the terminal speed for
the puck on the incline, defined so that v,2 = (mgsin#)/c. If we write this in the separated
form mdv/(v? 4 v,2) = —edt, we can integrate both sides (the left side from v, to v and the
right from 0 to t) to give

m
[arctan(v /v ) — arctan(v, /e )] = —ct (iii)
Uter

which can be solved to give
UV = Uger tan(arct.a.n(-v0 [Vter) — CUtert/ m)

Putting v = 0 in Eq.(iii), we find that the time to reach the top is t = (m/cvier) arctan(v, /vier ).

. coshz) [ 10
2.33 x» (a) Note that when z is large and positive,
cosh z = sinh 2z = ¢* /2. L5
Similarly, when z is large and negative, .
cosh z = —sinhz =~ e~*/2. ' '
-3 3
Also
cosh(0) =1 and sinh(0) = 0. r=l
i(iz) —i(iz) -z z sinh(z) --10
e e é e
(b) cos(iz) = +2 = 2+ = cosh(z).
Similarlv sinh(z) = —isin(iz).
d e ,—2 2z _ e—* d
(c) — cosh = 5 +26 . 26 = sinh(2), and likewise = sinh(z) = cosh(z).

Integtatmg these two results, we find that
/sinh(z) z =cosh(z) and [cosh(z) z = sinh(z)
(d) cosh?(z) — sinh®(z) = [cos(iz)]? — [—isin(iz)]? = [cos(iz)]? + [sin(iz)]? = 1
(e) If we make the substitution z = sinh(z), then

cosh zdz

dr
fm‘ T o

dz = z = arcsinh(z).




2.39 xx (a) The equation of motion is mv = —fi, — ev?, which separates to give
dv
—m————— =dt.
fo + v

This can be integrated from time 0 to ¢ (and velocity from v, to v). The integral over v gives
an arctan function. (Make the substitutions cv?/fr = u? and then v = tanw.) The result is

3 m ( : C g c )
= arctan , [ —v, — arctan , [ —uv | .
V ffrc ffr ffr

(b) Putting in the numbers, with v, = 20 m/s and the four given final velocities v =
15,10,5, and 0 m/s, we find the following corresponding times:

v(m/s) |15 10 5 0
t(s)| 6.3 184 483 142

The corresponding times if we neglect friction are (from Problem 2.26) 6.7, 20.0, 60.0,
and oo. To neglect friction, compared to the quadratic air resistance, is quite good at higher
speeds, but terrible at very low speeds.

2.47 x (a) z = 6+ 8i = 10e® and w = 3 — 4i = 5=, where & = 0.927 rad. (Note that the
phase angles of 2 and w are exactly opposite — same # in both expresions.) Therefore

z4+w=9+4 and z—w=3+ 12,

zw = (10e*) (5e~*) = 50,

and ~
z _ 10e® 26%% = 2 cos(26) + 2isin(20) = —0.56 + 1.92
w  He—if B " - o
or
2 i ephnloade) | ICdS . e e

w o ww* (3 —4i)(3 + 4i) 25
(b) 2z = 8¢™/? = 4 + 44/3i and w = 4¢"™/% = 24/3 + 2i. Therefore,
z+w=04+2V3)+(4v3+2)yi and z—w=(4—2V3)+ (4V3 - 2)i,

8 im/3 )
26— /344

P
~

w - 461'71‘/6

2w = (8¢"/%)(4¢"™%) = 32¢"? =32  and




2.53 ¥ The components of the force are F = ¢(E + v x B) = q(v, B, —v, B, E), so the three
components of ma = F are
mv, = qBv,, miy, = —qBu,, muv, = qF.

The first two of these are exactly the same as (2.64) and (2.65) for the case of no electric
field, and the motion of x and y is therefore the same as in Figure 2.15: The transverse
position (z, y) moves clockwise around a circle at constant angular velocity w = gB/m. The
equation for v, shows that there is a constant acceleration in the z direction, a. = ¢E/m,
so that z = 2z, + v, + %a.ztz. The particle moves in a helix or spiral of constant radius
around a line parallel to the 2 axis, with an increasing pitch as the motion in the z direction
accelerates.




